
S-Lang scripting for Midnight Commander.

S-LANG SCRIPTING FOR

MIDNIGHT COMMANDER

S-Lang scripting for Midnight Commander.

S-Lang scripting for Midnight Commander.

1 API: Functions exported to the interpreter.
The “cure_” prefix stands for “current editor”. All functions are in the mc namespace, i.e.: mc->func().

1.1 Editor functions (cure_ prefix).

1.2 Movement – #1 function.

cure_cursor_move (offset)
Moves the cursor offset bytes right or left (when offset is smaller than 0).

1.3 Getting offsets – #3 functions.

 cure_cursor_offset (void);
Returns an integer that is the cursor position in the buffer.

 cure_get_bol (void)
Gets an integer that is the offset of the beginning of current line.

 cure_get_eol (void)
Gets an integer that is the offset of the end of current line.

1.4 Getting data from buffer – #2 functions.

 cure_get_left_whole_word (skip_space)
Returns a string that is the word on left of cursor. If skip_space is true, then it jumps over a
single block of white space if necessary.

 cure_get_byte (byte_index)
Returns the byte at given byte offset.

S-Lang scripting for Midnight Commander.

S-Lang scripting for Midnight Commander.

1.5 Editing functions – #3 functions.

 cure_delete (void)
Deletes the char under the cursor.

 cure_backspace (void)
Deletes the char left of cursor.

 cure_insert_ahead (char)
Inserts the given char right of cursor.

1.6 Dialog functions – #4 functions.

 listbox (h, w, title, items)
Displays the list with given size, title and items.

 listbox_with_data (h, w, title, items, data)
Displays the list with given size, title, items and the associated data elements.

 listbox_auto (title, items)
Auto sized listbox.

 message (title, body)
A press-any-key message dialog with given title and body text.

1.7 Action hooks – #2 functions.

 set_action_hook (action_name, func_name, user_data)
Hooks up the given function to the given action.

S-Lang scripting for Midnight Commander.

S-Lang scripting for Midnight Commander.

 add_new_action (new_action_name, new_ck_id)
Adds a new action with given name and numeric ID.

1.8 Key bindings – #2 functions.

 editor_map_key_to_action (key, action_name)
Adds a key binding to the given action. TODO: use the enum ID.

 editor_map_key_to_func (new_action, key, func_name)
Adds a key binding to an also newly added action. The key will invoke the given S-Lang function.

2 Implementation
1. New files

There are 2 files added: src/slang_api_functions.c and src/slang_engine.c. The first
one implements the interface functions, which are enumerated in its header, which is processed
by Slirp, the S-Lang auto-export utility.

The second implements:

• script error catching and displaying,

• interpreter initialization,

• sourcing of init.sl script and of all plugins in ~/.config/mc/plugin.

2. SLIRP automatic binding utility.

One other file is being added – src/slang_api_functions_glue.c. It is the result of
running the official S-Lang binding utility↔ Slirp with the command: cd src; slirp -rc ../slirprc
-rename slang_api__ NULL -rename keybind_ NULL slang_api_functions.h;. It contains the
glue code between C and S-Lang interpreter. Besides linking it there has to be following call
after SLang_init_all():

/* Init the `mc` namespace. */
init_slang_api_functions_module_ns ((char *) "mc");

The call makes all the functions from slang_api_functions.h to become available to the
interpreter and grouped in namespace mc. So that one can then call, e.g.:

variable cursor_position = mc->cure_cursor_offset();

S-Lang scripting for Midnight Commander.

S-Lang scripting for Midnight Commander.

3. Example plugin: misc/grow_shrink_integer.plugin.sl.
The plugin uses the exported functions to implement integer advancing (Alt-a) and

decreasing (Alt-x). It’ll be automatically loaded if it’ll be copied to ~/.config/mc/plugin.

S-Lang scripting for Midnight Commander.

	1 API: Functions exported to the interpreter.
	1.1 Editor functions (cure_ prefix).
	1.2 Movement – #1 function.
	1.3 Getting offsets – #3 functions.
	1.4 Getting data from buffer – #2 functions.
	1.5 Editing functions – #3 functions.
	1.6 Dialog functions – #4 functions.
	1.7 Action hooks – #2 functions.
	1.8 Key bindings – #2 functions.

	2 Implementation

